September 27, 2023

Challenges adopting new technology: Learnings from developing an eCR pipeline with Los Angeles County DPH

Agenda

- Who we are
- Our work in public health
- Pilot overview
- Pipeline architecture
- Barriers to adoption
- Secret sauce

Who we are

Skylight

Skylight is a digital consultancy using design, technology, and procurement to help agencies deliver better public services.

Dan Paseltiner — Data Engineer with ~8 years of experience building software to process and analyze data in the physical sciences, neuroscience, and public health (Maine CDC).

Amrita Bhatti – Product Manager with ~7 years experience navigating highly technical product environments with deep knowledge of agile software development principles and human-centered design.

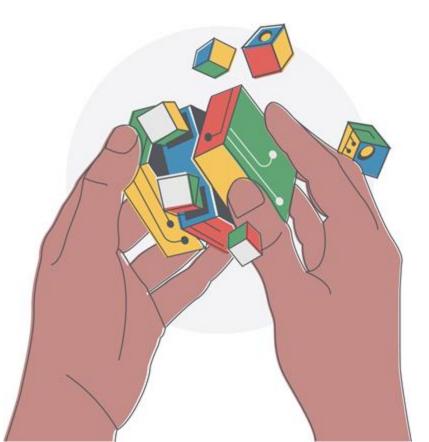
Our work in public health

Skylight ^O

We've been a key partner of the CDC in designing the future of the Data Modernization Initiative:

- We're at the forefront of building flexible, interoperable, and sustainable systems for public health.
- We built <u>SimpleReport</u>, a COVID-19 test result reporting tool that's processed over 7 million test results and counting.
- We are the engineers, PM's, and researchers on CDC's PRIME Data Integration Building Blocks (DIBBs) team.

Public health data strategy



Skylight^O

Public Health Data Goal		Milestones within 2 years1						
		End of 2023		End of 2024				
1	Strengthen the core of public health data Ensure Core Data Sources ² are more complete, timely, rapidly exchanged, and available to support the integrated ability to detect, monitor, investigate, and respond to public health threats		's matted to submit a generic care care data find that can be for national disease notification	Ð	Core case data for select reasonally realflable conditions are reported using a communitormal, using a COSC/Core Dag constant, and etamoticand in sear read-lates for COC programs and STL 7 performance access			
		32 jurisdictions ³ are ingesting <u>eCR</u> data into disease surveillance systems						
		100 110	of CDC inflations disease lake send tak last results to esternal an electronically (e.g., using EUX, CSTOR, intermediary)	0	BPs, of bits load order requests-rootiest operture suity at CDC infections descendates in g. using CTCPL COTOR intermediary)			
		1000	cod time to send mentality data to and tocative coded sause of state from CDC for 12-18 jointed clover (trough use of FHR inging		Reduced time to send martality data to and receive acidos cause of death data from COC for 16 additional jurisdictions (42–45 total) ² through use of F140 messaging			
		2.854	receives and ensures access to commercial lab data from at least (or suftenail commercial labs to enable attactional exercises as multiply conditions	Ø	CDC receivers and ensures access to commercial kit-data from at loss 3 major national and regional commonical table to snable situational avaraness across multiple-conditions			
					Versional of parking when to 10% (how 72% today) of U.S. new indexed amongoing departments to increase representativeness of <u>1022</u> data essensis and cares			

Potential Impact: 47 few people to detect a supported dealers of track and here ballon and mendored. But of used fastat case 3th american department modally data

 Los Angeles County Department of Health <> Data Integration Building Blocks Pilot

Pilot goals

eCR data is available in an easy-to-use format for LAC to conduct meaningful analysis and case investigation LAC IT has an ingestion pipeline for eCR, ELR and ADT, with the ability clean, transform, and link data, as well as scale with other datastreams Team

LAC team gains more experience with cloud services and modern development tools

Assumptions about LAC

- High technical maturity

- Large public health agency (PHA)
- Well-resourced*

*Relative to other PHAs

Challenges working with eCR

-

-

-

-

Skylight

Incoming data often formatted incorrectly and/or missing information

- Cannot easily identify invalid messages
- Many incoming eCR records contain very similar information
- Extracting relevant information from an incoming eCR record is time consuming
- eCR are more complex and information rich than eLR

Pilot timeline

Aug 2022	Dec 2022	Jan-May 2023	June-Sep 2023	Oct-Dec 2023
Kick off	Discovery	Alpha product	Beta product	Learnings
DIBBs team members visited LAC Department of Health for 2-day pilot kick-off	Held 10 additional discovery interviews with 6 LAC team members	Deployed DIBBs pipeline in LAC's Azure environment and processed sample eCR data	Conducted User Acceptance Testing (UAT) of the pipeline and processed production eCR data in LAC's live environment	Transition LAC from using the pipeline to owning it, developing handoff materials and project findings. Conduct impact analysis.

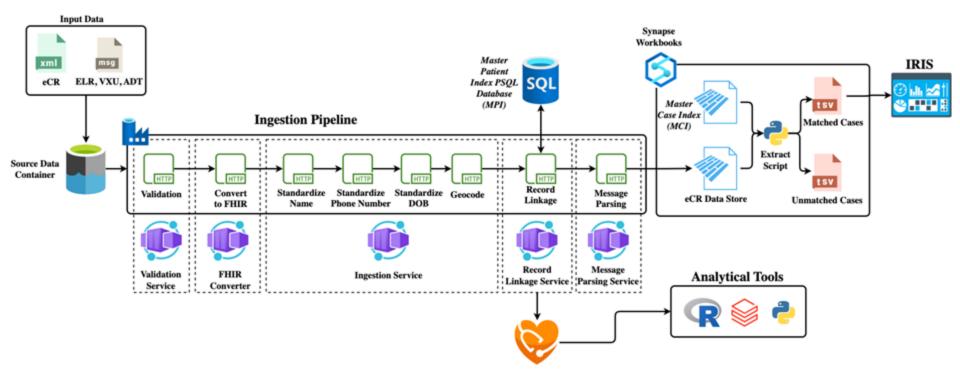
LAC problem statements

Skylight

What problems surfaced?

- CliniSys does not support eCR data
- Unable to parse eCR data easily in tabular format
- Data ingestion is disparate and siloed across datastreams
- Commercial integration engines are expensive
- Cloud migration is challenging without extensive cloud expertise

Technical needs met


Skylight

eCR Needs

- ✓ Validate incoming data
- ✓ Enrich through standardization and geocoding
- ✓ Record linkage
- ✓ Flexible parsing based on public health need
- ✓ External data store
- / Transform into a format supported by

surveillance system

Pipeline architecture

FHIR Server

Expectation...the perfect handoff

Reality...unexpected obstacles

Familiar problems in public health

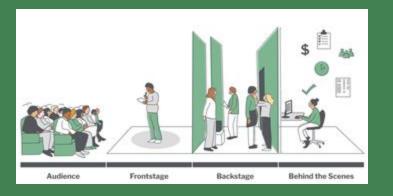

Structural barriers

- 1. Early in cloud adoption
- 2. Limited staffing capacity
- 3. Lack of trust
- 4. Gap between implementation and ownership

Solutions

- Invest in jurisdictional cloud hosted services
- 2. Upskill and hire additional staff
- 3. Recognize sensitivity of processing public health data
- 4. Anticipate and plan for the heavy lift of integrating new services

How did we adjust course?



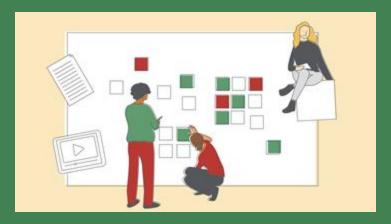
Secret sauce — ABLE

- **1.** Apply a service design lens from the start
- **2. B**uild enablement into your process
- 3. Leverage research-driven design
- 4. Engage in continuous user testing

Apply a service design lens from the start

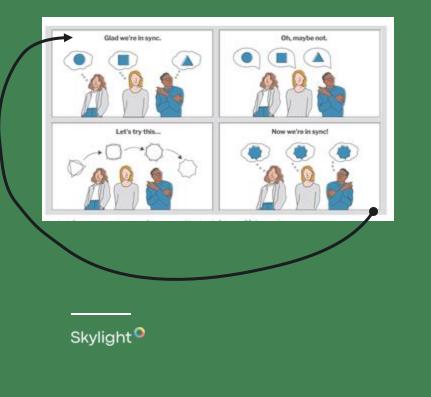
- Check your assumptions
- Success of highly technical solutions requires substantial understanding of the entire ecosystem

Build enablement into your process



It's not enough to just update a jurisdiction on what we're doing and expect them to use the product at the end

-


- We brought LAC into our agile ceremonies and held regular product demonstrations

Leverage research-driven design

- User research and design should iterate hand-in-hand with engineering efforts
- Ongoing research is imperative; relying only on initial discovery is insufficient

Engage in continuous user testing

- User test everything to make sure the product is easy to use
- User acceptance testing drove all of our handoff materials

Better methods = better results

- **1.** Apply a service design lens from the start
- 2. Build enablement into your process
- **3.** Leverage research-driven design
- **4.** Engage in continuous user testing

Thank you

Huge thank you to the Los Angeles County Department of Public Health team who has been astounding to work with!

